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Abstract. The problem of sound propagation in rigid porous media is in-
vestigated. Two so-called scaling functions are introduced to describe the
dynamic viscous and thermal interaction of the pore fluid and the porous
structure. These scaling functions are characterized by the viscous and ther-
mal permeabilities k0 and k′0, the viscous and thermal tortuosities α∞, α0,
and α′0, and the characteristic length scales Λ and Λ′. These parameters can
be numerically evaluated from steady-state descriptions. For a pore geome-
try consisting of an arrangement of cylinders, the characteristic parameters
are presented. The full microscopic dynamic flow and heat problems for
this configuration were solved, averaged, and compared with the scaling
functions. We found that for this configuration the scaling functions gave
an accurate description of the oscillatory flow and heat phenomena.

1. Introduction

Sound propagation in porous media is of importance in many fields of en-
gineering science. In air-filled sound absorbing materials, the frequency de-
pendence of the compressibility varies from isothermal at low frequencies
to adiabatic in the high-frequency regime. Similarly, the frequency depen-
dence of the gas density, which can be described in terms of dynamic flow
permeability or in terms of dynamic frame tortuosity, varies from viscosity-
dominated at low frequencies to inertia-dominated in the high-frequency
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regime. The understanding of such behaviour in equally important for the
oil industry, where acoustic borehole logging is commonly practiced. A
borehole is drilled in a potential hydrocarbon reservoir and probed with
an acoustic tool. The inversion process comprises the delineation of the
reservoir properties from the acoustic signals, and is complicated because
of the inherent inhomogeneity of the reservoir with its multiple inclusions
and microcracks on the microscale. On the macroscale, where the measure-
ments are performed, these inhomogeneities affect the viscous and thermal
behaviour of the porous fluid-solid system. This work presents a numerical
study on the macroscopic dynamic properties of a schematic rigid porous
medium, starting from the microscopic geometry of the pore space.

2. Theory

The process of sound propagation in gas-filled rigid porous media can be
characterized by a complex-valued tortuosity and compressibility. These
two so-called scaling functions are frequency-dependent and governed by
the microgeometry of the pores. The linear (i.e., small-amplitude) response
of the pore fluid to a macroscopic pressure gradient ∇〈p̂〉eiωt is usually
described in terms of the macroscopic fluid velocity 〈v̂〉eiωt and the dynamic
tortuosity α(ω) (Johnson et al. 1987):

iωα(ω)ρf 〈v̂〉 = −∇〈p̂〉, (1)

where the dynamic tortuosity takes into account the viscous and inertial
interaction of air with the porous frame. The combination α(ω)ρf is some-
times called the dynamic gas density. The symbol 〈〉 denotes an intrinsic
air-phase average. An alternative formulation is based on a dynamic exten-
sion of Darcy’s law (Lévy 1979, Auriault et al. 1985):

ηφ
k(ω)

〈v̂〉 = −∇〈p̂〉, (2)

where k(ω) is the dynamic permeability, φ is the porosity, and η the dy-
namic viscosity. This means that α(ω) and k(ω) are not independent:
α(ω) = −iα∞k0ωc/ωk(ω), where we have introduced a characteristic fre-
quency ωc = ηφ/α∞k0ρf with k0 the stationary Darcy permeability. Lo-
cally, v̂ and p̂ have to satisfy the unsteady Stokes equation for incompress-
ible media:

iωρf v̂ = −∇p̂ + η∇2v̂. (3)

On the basis of a microstructural approach, Auriault et al. (1985) and
Johnson et al. (1987) proved that for high frequencies

lim
ω→∞

α(ω) = α∞
[

1 + (1− i)
δ(ω)
Λ

]

, (4)
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where α∞ is the so-called tortuosity, δ(ω) is the viscous boundary layer
thickness

√

2η/ρfω, and Λ is a viscous length scale. For a porous material
consisting of an ensemble of parallel identical tubes, for example, Λ equals
the radius of those tubes.

For low frequencies, we simply find that k(ω) → k0. A straightforward
analytical scaling function was proposed by Johnson et al. (1987) which
satisfies both high- and low-frequency limits:

α(ω) = α∞[ 1− i
ωc

ω
F (ω) ], (5)

where F (ω) =
√

1 + 1
2 iM ω

ωc
, with M the so-called similarity parameter

8k0α∞/φΛ2.
Following Champoux & Allard (1991), we write the mass continuity law

of a perfect gas to address the thermal dissipation problem:

iω
β(ω)
γ〈p〉

〈p̂〉 = −∇ · 〈v̂〉, (6)

where β(ω) is the reduced dynamic incompressibility γ〈p〉/Kf (ω), with γ
the specific heat ratio, and Kf (ω) the dynamic compressibility. Locally, the
temperature equation for a perfect gas has to be satisfied:

iωρfcpT̂ = iωp̂ + λg∇2T̂ . (7)

Here, the specific heat at constant pressure is denoted by cp, λg is the
thermal conductivity, and T̂ is the excess temperature. Introducing the
characteristic thermal frequency ω′c = agφ/k′0, with k′0 the stationary ther-
mal permeability and ag the thermal diffusivity λg/ρfcp, a straightforward
analytical scaling function was proposed by Champoux & Allard (1991)
to satisfy both the high-frequency adiabatic limit and the low-frequency
isothermal limit:

β(ω) = γ − (γ − 1)[ 1− i
ω′c
ω

F ′(ω) ]−1, (8)

where F ′(ω) =
√

1 + 1
2 iM ′ ω

ω′c
, with M ′ the thermal similarity parameter

8k′0/φΛ′2. A thermal lengthscale Λ′ is introduced here. The viscous and
thermal behaviour can elegantly be described by means of the relaxation
functions χ(ω) = 1 − α∞/α(ω) and χ′(ω) = (β(ω) − 1)/(γ − 1). They
show similar behaviour over the entire frequency regime and they represent
the so-called Johnson-Allard (JA) model. We will also consider the low-
frequency exension of this JA-model, suggested by Pride et al. (1993). Here
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the functions F (ω) and F ′(ω) are defined as:

F (ω) = 1− p + p

√

1 +
1
2
i
M
p2

ω
ωc

, (9)

F ′(ω) = 1− p′ + p′
√

1 +
1
2
i
M ′

p′2
ω
ω′c

, (10)

where p = M/4(α0/α∞ − 1) and p′ = M ′/4(α′0 − 1), with α0 and α′0 the
low-frequency viscous and thermal equivalents of the tortuosity. This model
will be referred to as the Pride model.

3. Numerical computations

Numerical computations were performed on a 2-D configuration of solid
cylinders surrounded by gas drawn in the upper left corners of Figs. 1 and
2. The unit cell used in the computations has identical width and height
B = H = 2L. The radius of the cylinders is r = 0.7136L, corresponding
to a cell porosity φ = 0.60. Using the SEPRAN finite-element package
(Cuvelier et al. 1986), we computed α∞, α0, α′0, Λ, Λ′, k′0, and k0. The
results are presented in Table 1. It was shown by Johnson et al. (1987)
that α∞ = 〈|v∞|2〉/|〈v∞〉|2, and that 2/Λ =

∫

|v∞|2dS/
∫

|v∞|2dV , where
the latter integral describes a velocity-weighted surface-to-volume ratio.
The velocity field v∞ = ∇ψ, limiting the oscillatory viscous flow for the
high–frequencies regime, follows from the potential problem ∇2ψ = 0, with
Neumann boundary conditions on the fluid–solid interface and periodicity
on the inlet–outlet surfaces, i.e., the sides of the unit cell in this case.
Furthermore, we computed k0 by solving the Stokes problem η∇2v0−∇p+
e = 0, and ∇ · v0 = 0, the quantity e being a unit force vector. No–slip
boundary conditions at the pore walls, and periodicity of v0 and p were
prescribed.

The thermal parameters can be expressed as follows: α′0 = 〈T 2
0 〉/〈T0〉2,

and 2/Λ′ =
∫

dS/
∫

dV . This means that both α′0 and k′0 can be computed
from the problem ∇2T0 + e = 0, where e is the thermal scalar equivalent of
the unit force vector in the flow problem. Dirichlet boundary conditions on
the fluid–solid surface, and periodicity on the inlet–outlet boundaries were
used for T0.

The full dynamic flow problem (3) was solved using a finite-element
method developed by Guermond (Firdaouss et al. 1999). The full dynamic
heat problem (7) was solved using the SEPRAN package. Results are pre-
sented in Figs. 1 and 2, where we plotted the two relaxation functions χ(ω)
and χ′(ω). The shape of both scaling functions is identical. We notice that
a perfect agreement between the numerical computations and the Pride
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φ k0/L2 α0 α∞ Λ/L k′0/L2 α′0 Λ′/L

0.6000 0.0184 1.7301 1.4105 0.7186 0.0505 1.2761 1.0705

TABLE 1. Characteristic parameters.

model can be found for both the flow and the heat problem. The JA–model
gives a reasonable prediction of the numerical results, but shows some devi-
ations in the rollover frequency zone. It was suggested previously that the
scaling functions are accurate for a wide range of morphologies (Johnson
et al. 1987), but that they break down for more extreme configurations
where the pore flow channels contain sharp–edged intrusions (Firdaouss et
al. 1999).

4. Conclusions

For a cylindrical pore geometry we have numerically computed the charac-
teristic parameters determining the scaling functions defined by Johnson–
Allard and Pride et al. These scaling functions were compared with a full
solution of the microscopic dynamic flow and heat problems. An excellent
agreement was found for the Pride model, whereas the Johnson model did
show some minor deviations. We remark that the shape of the scaling func-
tions for flow and heat are identical, due to the similarity between the
dissipation processes in the viscous and thermal boundary layers.
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Figure 1. Viscous relaxation function vs dimensionless frequency ω/ωc for an arrange-
ment of solid cylinders surrounded by fluid. Crosses and circles represent direct numerical
simulations. The solid line represents Johnson’s model and the dashed line Pride’s model.
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Figure 2. Thermal relaxation function vs dimensionless frequency ω/ω′c for an arrange-
ment of solid cylinders surrounded by fluid. Crosses and circles represent direct numerical
simulations. The solid line represents Johnson’s model and the dashed line Pride’s model.


